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Abstract. We present a functional Schrödinger picture formalism of the (1+ 1)-dimensional
O(N) nonlinear sigma model. The energy density has been calculated to two-loop order using
the wavefunctional of Gaussian form, and from which the non-perturbative mass gap of the
boson fields has been obtained. The functional Schrödinger picture approach combined with the
variational technique is shown to describe the characteristics of the ground state of the nonlinear
sigma model in a transparent way.

1. Introduction

The ground state of interacting quantum fields, in general, has a complicated structure,
making its investigation difficult: consequently attempts at using ordinary perturbation
theories have met without much success. In particular, concerning spontaneous symmetry
breaking and bound states, perturbative ground states lead to wrong results [1]. In
this respect, the functional Schrödinger picture (FSP) approach with the variational
approximation is expected to be a useful tool in examining the non-perturbative aspects
of quantum field theory.

In contrast to the usual perturbative expansion, the Schrödinger picture approach has the
merit that one does not need to specify a particular Fock basis for the ground state of the
Hamiltonian under consideration. Therefore, where there is no well-defined Fock vacuum,
this method appears to be a convenient choice [2].

In particular, the nonlinear sigma (NLS) model [3–6] has a non-trivial vacuum structure
that is composed of particle–antiparticle pairs. The ground state is not easily tractable
applying the usual perturbation expansion. Therefore, it appears as a natural candidate for
application of the FSP approach. The aim of this paper is to analyse the NLS model in
the framework of the FSP method combined with a variational approach [7–10], which is
known to go beyond the perturbative scheme in some cases. We will show that the non-
perturbative phenomena like the mass gap and asymptotic freedom can be described in the
Schr̈odinger picture in a direct way.

The NLS model in lower dimensions has attracted much attention, since it has
relevance to the low-energy limit of QCD as well as condensed-matter systems such as
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antiferromagnets. The NLS model in two dimensions is classically scale-invariant and
asymptotically free [3–5]. According to Mermin–Wagner and Coleman [11], the continuous
symmetry cannot be broken in 1+ 1 dimensions; the massless Goldstone bosons tend to
acquire their masses. It was also shown that there is a mapping between the NLS model
and the effective long wavelength action of the quantum Heisenberg antiferromagnet [12].

In section 2, we briefly introduce the NLS model and its formulation in the FSP
approach. In section 3, we first calculate the energy density to two-loop order using
a Gaussian-type wavefunctional, and then derive the mass gap for the boson fields by
minimizing the energy density. We will show that in the NLS model, the massive ground
state is more stable than the massless one. In section 4, we give a brief summary and
discussion of our results.

2. The nonlinear sigma model in the functional Schr̈odinger picture

We start with theO(N)-invariant Lagrangian density [3, 5]

L = 1

2λ
∂µ8a∂

µ8a (1)

whereN scalar fields8a, a = 1, . . . , N , obey the constraint
N∑
a=1

8a8a = 1. (2)

This constraint makes the theory quite complicated, since theN components of the scalar
field 8 are mutually dependent on each other. The coupling constantλ is a measure of the
strength of the self interaction of theN scalar fields8a, and a small value ofλ corresponds
to a weak interaction. The constraint in (2) means that one degree of freedom among
theN variables,8a, is not a real dynamical variable [13]. Thus, we follow the standard
prescription to get rid of theNth field8N through the following nonlinear transformation [4]:

8a = φa

(1+ φ2/4)
8N = (1− φ2/4)

(1+ φ2/4)
(3)

where φ2 ≡ ∑N−1
a=1 φa

2. Substituting these expressions in the Lagrangian, we find the
equivalent Lagrangian involving theN − 1 fieldsφa:

L = 1

2λ

∂µφa∂
µφa

(1+ φ2/4)2
. (4)

Here, and in what follows, summation over the repeated indices is implied; otherwise, a
comment will be given explicitly.

The NLS model in terms of theφa has no mass parameter, so these fields are classically
massless Goldstone bosons. However, the Goldstone bosons originate from the breakdown
of the continuousO(N) symmetry, which cannot occur in this case [11]. In what follows,
it will be seen that the Goldstone bosons become massive through the quantum mechanical
self-interaction.

The canonical quantization procedure of the classical system requires the conjugate
momentum of the fieldφa, which becomes

πa = ∂L
∂φ̇a

= 1

λ

φ̇a

(1+ φ2/4)2
. (5)
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Thus, the Hamiltonian is written in terms of the canonical variables,πa andφa as

H = πaφ̇a − L(φa, φ̇a)

= 1

2
λ

(
1+ φ

2

4

)2

π2+ 1

2λ

φ′2

(1+ φ2/4)2
(6)

where we have used the conventionsφ2 ≡ ∑N−1
a=1 φ

2
a , π2 ≡ ∑N−1

a=1 π
2
a and φ′2 ≡∑N−1

a=1 (∇φa · ∇φa).
In the quantum theory, the dynamical field variableφa(x) and πa(x) become field

operators. Theseπa satisfy the canonical equal-time commutation relations with theφa
such that

[φa(x), πb(y)]x0=yo = iδabδ(x − y). (7)

In the FSP representation of its quantum theory, the scalar field operatorφa(x) and its
conjugate momentumπa(x) are realized [7–9] as

φa(x)→ φa(x)

πa(x)→−ih̄
δ

δφa(x)
.

(8)

We now employ a Gaussian-type wavefunctional [9] with two variational function
parametersGab(x, y) and φ̂a(x):

9[φ] = 1

[det(2πh̄G)]1/4
exp

[
−
∫
x,y

(φa(x)− φ̂a(x))G
−1
ab (x, y)

4h̄
(φb(y)− φ̂b(y))

]
(9)

where repeated indices overa or b mean sums; an explicit comment will be given otherwise.
This wavefunctional may be seen to obey the constraints

〈9|9〉 = 1

〈9|φa(x)|9〉 = φ̂a(x)
〈9|πa(x)|9〉 = 0.

(10)

Here,φ̂a(x) is the expectation value of the field operatorφa(x), and the expectation value of
the momentum operator has been chosen to be zero. From the above trial wavefunctional, we
readily obtain the following results, which are needed for the calculation of the expectation
value of the Hamiltonian:

〈φa(x)φb(y)〉 = φ̂a(x)φ̂b(y)+ h̄Gab(x, y)

〈πa(x)πb(y)〉 = 1
4h̄G

−1
ab (x, y).

(11)

3. Large-N calculations

In order to obtain the expectation value of the Hamiltonian with the Gaussian trial
wavefunctional〈9|H |9〉, it is necessary to handle the field operator in(1 + φ2/4)−2

properly. For that purpose, we expand it in terms ofφ2/4, which involves an infinite
number of terms of even powers ofφa(x) fields.

Thus, we have to evaluate terms as follows:

〈9|
︷ ︸︸ ︷
φ2(x) · · ·φ2(x) π2(x)|9〉 and 〈9|

︷ ︸︸ ︷
φ2(x) · · ·φ2(x) φ′2(x)|9〉 (12)
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which cannot be calculated in closed forms, except for some special limiting cases. Due
to this inability, we require an approximation scheme. Here, we will resort to large-N

calculations [14]. The following example will show why the large-N approximation is
useful in the present problem:

〈9|φ2(x)φ2(x)π2(x)|9〉 =
[
(φ̂aφ̂a + h̄Gaa)(φ̂bφ̂b + h̄Gbb)

1
4h̄G

−1
cc

]
+ h̄2

[
φ̂aGabφ̂bG

−1
cc − 1φ̂aφ̂aδbbδ(0)+ 1

2h̄GabGbaG
−1
cc − h̄Gaaδbbδ(0)

]
− 2h̄2

[
φ̂aφ̂a + h̄Gaa

]
(13)

where the three terms in the brackets on the right-hand side are of the order ofN3, N2 and
N respectively. Thus in the large-N limit, only the leading terms ofN3 order dominate:

〈9|φ2(x)φ2(x)π2(x)|9〉 Large N−→ (φ̂aφ̂a + h̄Gaa)(φ̂bφ̂b + h̄Gbb)
1
4h̄G

−1
cc

= 〈9|φ2(x)|9〉〈9|φ2(x)|9〉〈9|π2(x)|9〉. (14)

Therefore it is clear that in the large-N limit, the expectation values of the composite
operators [4] become

〈9|φ2(x) · · ·φ2(x)π2(x)(or φ′2(x))|9〉
= 〈9|φ2(x)|9〉 · · · 〈9|φ2(x)|9〉〈9|π2(x)(or φ′2(x))|9〉. (15)

To construct an 1/N expansion [14] in a systematic way, we define a new parameterg such
that

g ≡ λN (16)

where g is constrained to be finite. Thus, we are allowed to write the Hamiltonian
expectation value in the following form:

〈9|H |9〉 = 1

2

g

N

[
1+ 〈φ

2〉
4

]2

〈π2〉 + 1

2

N

g

[
1+ 〈φ

2〉
4

]−2

〈φ′2〉 (17)

where on the right-hand side, the expectation value has been taken with respect to the
Gaussian wavefunctional in (9). Using the results for〈φ2〉, 〈π2〉 in (11), this equation can
be rewritten as

〈H 〉 = 1

2

g

N

[
1+ 1

4
(φ̂aφ̂a + h̄Gaa)

]2
h̄

4
G−1
cc

+1

2

N

g

[
1+ 1

4
(φ̂aφ̂a + h̄Gaa)

]−2

(∇φ̂c∇φ̂c −∇2h̄Gcc). (18)

At this stage, we confine ourselves to the constant field configuration for theφ̂a(x)

fields, so that the square of the gradient ofφ̂a(x) in (18) vanishes. The scheme to expand
〈9|H |9〉 in powers ofh̄ and discard terms higher than second order in ¯h2 will be adopted in
the below. The ¯h expansion is equivalent to the loop expansion [5, 15]. Thus, we are going
to study the system to two-loop order. The energy density given in (18) can be expanded
to second order in ¯h to yield

〈H 〉 = 1

2

g

N
f 2(φ̂)

[
1+ 1

2

h̄Gaa

f (φ̂)

]
h̄

4
G−1
cc −

1

2

N

g
f −2(φ̂)

[
1− 1

2

h̄Gaa

f (φ̂)

]
(∇2h̄Gcc) (19)
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where we have used the definitionf (φ̂) = 1+ 1
4φ̂

2.
We now vary this equation with respect toGbb(x, x) to determine the parameters

Gbb(x, x) which minimize the energy expectation value. Thus, one obtains the following
relation:

δ〈H 〉 = g

N

h̄f (φ̂)

8

[
h̄

2
G−1
aa − f (φ̂)

[
1+ h̄

2f (φ̂)
Gaa

]2 1

Gbb
2

]
δGbb

+N
g

h̄

2f 2(φ̂)

[
−
[

1− h̄

2f (φ̂)
Gaa

]
∇2+ h̄

2f (φ̂)
∇2Gaa

]
δGbb = 0. (20)

Here and below, we will use the following notation. Repeated indices over the letterb do
not indicate a sum, whereas repeated indices overa do mean a sum. This equation gives
the relation that the variational parameterGbb must satisfy:

G−2
bb (x, y) =

[
−N

2

g2

4

f 4(φ̂)

(
1− 3

2

h̄Gaa(z, z)

f (φ̂)

)
∇2
x +

1

2

h̄

f (φ̂)
G−1
aa (z, z)

]
δ(x − y) (21)

which has also been expanded in powers of ¯h, and terms higher than ¯h have been discarded,
so that only terms up to ¯h2 can be retained in (19). Since it is practically impossible to
solve this equation directly, we separate the equation into two parts as follows:

Gbb(x, y) = g

N

f 2(φ̂)

2

1

[1− (3h̄/2f )Gaa(z, z)]1/2

∫
dnp

(2π)n
1√

p2+m2
exp[ip(x − y)] (22)

and

m2 = g2

N2

h̄f 3(φ̂)

8
G−1
aa (x, x) (23)

where the latter turns out to define the mass parameter of the boson operatorφ(x), as will
be seen in (26).

We analyse the equation using the following iterative method. First, we approximate
the unknown functionGbb(x, y) by G(0)

bb (x, y):

G
(0)
bb (x, y) =

g

N

f 2(φ̂)

2

∫
dnp

(2π)n
1√

p2+m2
exp[ip(x − y)]. (24)

Second, to improve this approximation, we substitute the equation back in the coefficient
of the right-hand side of (22). Thus, we have

G
(1)
bb (x, y) =

g

N

f 2(φ̂)

2

1

[1− (3h̄/2f )G(0)
aa (x, x)]1/2

∫
dnp

(2π)n
1√

p2+m2
exp[ip(x − y)].

(25)

Note that the multiplicative factor in front of the integral has a divergence involving a
cutoff 3. This must be removed by a proper renormalization of the wavefunctionφ(x).
Then the wavefunction renormalized expression forGbb(x, y) becomes

G
(f )

bb (x, y) =
g

N

f 2(φ̂)

2

∫
dnp

(2π)n
1√

p2+m2
exp[ip(x − y)]. (26)

This form will be used in the subsequent discussions in calculating the energy expectation
value. As a result of this renormalization, equation (21) is now rewritten as

G−2
bb (x, y) =

[
−N

2

g2

4

f 4(φ̂)
∇2
x +

1

2

h̄

f (φ̂)
G−1
aa (z, z)

]
δ(x − y). (27)
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Let us now evaluate the Hamiltonian expectation value using equations (23) and (26).
The ∇2Gaa in the Hamiltonian can be calculated multiplying (27) byGbb(y, z) and
integrating over the volume

∫
dy:

∇2Gaa(x, x) = − g
2

N2

f 4(φ̂)

4
G−1
aa (x, x)

[
1− 1

2

h̄

f (φ̂)
Gaa(x, x)

]
. (28)

Since the classical Lagrangian density in (4) has no potential energy part, we are allowed
to setφ̂a = 0, which leads to

f (φ̂) = 1. (29)

We will consider only the (1+ 1)-dimensional case, son in (26) is chosen to be 1. Thus,
the Hamiltonian to second order in ¯h, i.e. to two-loop order, is given by

〈9|H |9〉 = g

N

h̄

8
G−1
aa (x, x)

[
1+ h̄

2
Gaa(x, x)

]
+ g

N

h̄

8
G−1
aa (x, x)

[
1− h̄

2
Gaa(x, x)

]2

= g

N

h̄

4
G−1
aa (x, x)

[
1− h̄

4
Gaa(x, x)

]
. (30)

Using the mass defining relation (23) and two-point Green function (26), one can
evaluate〈H 〉:

〈H 〉
N
= 2m2

g

(
1− h̄

4
Gaa(x, x)

)

= 2m2

g

[
1− h̄g

8

∫ 3

−3

dp

2π

1√
p2+m2

]

= 2m2

g

[
1− h̄g

16π
ln

(
432

m2

)]
(31)

where3 is an ultraviolet momentum cutoff. To make the energy density finite, we may
renormalize the parameter of the theory. Defining the renormalized coupling constantgr

1

g
= 1

gr
+ h̄

16π
ln

(
432

µ2

)
(32)

we obtain the finite-energy density with the renormalization scaleµ:

〈H 〉
N
= 2m2

gr
+ h̄m

2

8π
ln

(
m2

µ2

)
. (33)

Note that this is the result up to ¯h2, since the mass parameterm2 is of orderh̄. This energy
expectation value has a minimum away from the origin, since it is concave upward asm2

increases.
Hence, by minimizing the energy expectation value with respect tom2, one can derive

the mass gap

∂〈H 〉/N
∂m2

= 2

gr
+ h̄

8π
ln

(
em2

µ2

)
= 0. (34)

From this relation, one obtains the dynamically generated mass gap:

〈m2〉 = µ2 exp

[
−1− 16π

h̄gr

]
. (35)
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One may note that this result for the mass gapm is actually the same as those obtained
through other methods in the literature [3–5]. Remembering the invariance of the system
under renormalization group, the mass gap can be rewritten as a function ofµ alone in an
equivalent way, as in [6].

The NLS model has no dimensional parameters; the couplingg is dimensionless in two
dimensions. However, we arrived at a dimensional parameterm2; this phenomenon is an
example of dimensional transmutation. At this value of the mass gap, the energy density to
two-loop order becomes

〈H 〉
N
= 2〈m2〉

gr
+ h̄〈m

2〉
8π

ln

( 〈m2〉
µ2

)

= − h̄

8π
µ2 exp

[
−1− 16π

h̄gr

]
. (36)

Note that the negative sign of the energy density indicates that the massive ground state is
more stable than the massless one in the NLS model.

We now return to the mass-defining equation, equation (23). One can see that
equation (27) leads to

G−1
aa (x, x) =

2N

g

∫ +∞
−∞

dp

2π

√
p2+m2. (37)

Thus, differentiating equation (23) with respect tom2, one finds the relation between the
coupling constantg and the cutoff3:

1

g
= h̄

8

∫ ∞
−∞

dp

2π

1√
p2+m2

= h̄

16π
ln

(
432

m2

)
. (38)

This relation shows that as3 becomes large, the coupling constantg approaches zero,
thus satisfying asymptotic freedom. This equation can be also rewritten in terms of the
renormalized couplinggr and the renormalization mass scaleµ in (32).

4. Conclusion

In this paper, the functional Schrödinger picture approach has been applied to the analysis
theO(N) nonlinear sigma (NLS) model. We have considered theO(N) NLS model in the
large-N limit and calculated the energy expectation value to second order in ¯h (two-loop
order) systematically, using a wavefunctional of Gaussian form. The Schrödinger picture
approach combined with the variational technique produced the mass gap and the asymptotic
freedom of the ground state for theO(N) NLS model in a straightforward manner.

Most of the literature on theO(N) NLS model adopts the Lagrangian formalism to
investigate its non-perturbative phenomena, where a composite auxiliarly fieldσ(x) =∑

a 8a(x)8a(x) is usually introduced. However, here we discuss its non-perturbative
phenomena directly without resorting to the superfluous auxiliarly field.

The extension of our calculations to three dimensions will be straightforward; the
difference will be to write the Green function in (26) in the corresponding three-dimensional
form and carry out the integral in three dimensions.
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